
12

1	 About this unit
Software: 	 Scratch (or Kodu)
Apps: 	 Snap! in the web browser (Scratch requires
	 Flash, which is not available on iPad)
Hardware: 	 Desktop/laptop computers, microphones
Outcome: 	 An original computer game, ideally uploaded to
	 the Scratch community site

UNIT SUMMARY

The pupils plan their own simple computer game.
They design characters and backgrounds, and create
a working prototype, which they develop further
based on feedback they receive.

CURRICULUM LINKS

Computing PoS
	 Design, write and debug programs that accomplish

specific goals, including controlling or simulating
physical systems; solve problems by decomposing
them into smaller parts.

	 Use sequence, selection, and repetition in
programs; work with variables and various forms of
input and output.

	 Use logical reasoning to explain how some simple
algorithms work and to detect and correct errors in
algorithms and programs.

	 Select, use and combine a variety of software
(including internet services) on a range of digital
devices to design and create a range of programs,
systems and content that accomplish given goals ...

Suggested subject links
	 Art and design: Pupils can improve their art and

design skills by creating artwork for their games.
	 Music: Pupils can record sound or compose music

for their games.
	 The games may require an understanding of aspects

of maths and science to ensure the computer model
on which the game is based is realistic.

TRANSLATING THE COMPUTING PoS

	 Making a computer game gives ample scope
for pupils to design and create programs to
accomplish a given goal.

	 The pupils will be working with a variety of input

and output, which will include keyboard and/or
mouse (input), and the computer display together
with speakers or headphones (output).

	 Creating the games involves common programming
constructs such as sequences of instructions,
selection (the behaviour of the game varies
according to the player’s actions) and repetition
(which might be dependent on a particular event
occurring, such as clicking a sprite).

	 If games use scores, levels, randomisation or time
limits, the pupils will need to work with variables.

	 The pupils’ games are unlikely to work first time,
so they’ll need to use logical reasoning to detect
and correct errors. As they provide feedback to
one another, they’ll become more discerning in
evaluating digital content.

LEARNING EXPECTATIONS

This unit will enable the children to:
	 create original artwork and sound for a game
	 design and create a computer program for a

computer game, which uses sequence, selection,
repetition and variables

	 detect and correct errors in their computer game
	 use iterative development techniques (making

and testing a series of small changes) to improve
their game.

The assessment guidance on page 20 will help
you to decide whether the children have met these
expectations.

VARIATIONS TO TRY

	 Scratch is strongly recommended, but other game
development toolkits are available. Kodu provides
a rich, immersive 3D environment.

	 The MaKey MaKey controller offers an alternative
approach to providing keyboard input. See
www.makeymakey.com.

Unit
5.1

We are game developers
Developing an interactive game

www.makeymakey.com

13

	 USEFUL LINKS

Software and tools
	 Scratch is free software. Download from

http://scratch.mit.edu/scratch_1.4 or use online at
http://scratch.mit.edu/projects/editor.

	 Snap! is free open source software. Use online at
http://snap.berkeley.edu/snapsource/snap.html.

	 Kodu is free software that can be
installed on modern Windows computers:
www.kodugamelab.com.

Online tutorials
	 Introduction to Scratch 2.0: http://info.scratch.mit.

edu/Video_Tutorials.
	 Interactive tutorials for Kodu are included in the

download.

Information and ideas
	 Scratch: http://scratch.mit.edu.
	 Scratch educator community: http://scratched.

media.mit.edu.
	 Code Club materials for the ‘Whack-a-Witch’

game: http://codeclub-assets.s3.amazonaws.com/
public/codeclub-whackawitch.pdf.

	 Snap!: http://byob.berkeley.edu.
	 Flickr: www.flickr.com.
	 Freesound: www.freesound.org.
	 Rubber duck debugging: http://en.wikipedia.org/

wiki/Rubber_duck_debugging.

Games
	 Angry Birds: http://chrome.angrybirds.com.
	 Light-bot: http://light-bot.com/flash-lite.html.
	 Doctor Who 50th Anniversary game: www.google.

com/doodles/doctor-whos-50th-anniversary.
	 Some simple Scratch games, e.g. http://scratch.

mit.edu/projects/15906446, http://scratch.mit.
edu/projects/15906870, http://scratch.mit.edu/
projects/15907506.

THINGS TO DO
	 The work in this unit assumes the pupils have

completed earlier programming and computational
thinking units in Switched on Computing; if they
have not, they may need additional time and
support to create an enjoyable, playable game.

	 Read the Core steps sections of Running the task.
	 Decide which software/tools are most accessible/

appropriate for use with your class.
	 Download your chosen software/tools (see Useful

links) and spend some time familiarising yourself
with them.

	 Watch the Software in 60 seconds walkthroughs
for this unit.

WWW

	 Think about the individuals and groups you have in
your class. Could you use any of the Extensions on
pages 14–19 to extend your more able children?
Could you use any of the suggestions in Inclusion
(see below) to support children with specific
needs, e.g. SEN or EAL? Have you considered
how a Teaching Assistant will support you and the
children, if one is available?

	 Ensure you have sufficient computers/laptops/
tablets and other equipment booked in advance.

THINGS YOU NEED
	 Relevant exemplification from the web (see Useful

links)
	 Computers with internet access
	 Microphones
	 Ideas of curriculum topics for games, if desired

CD-ROM RESOURCES

	 Example games written in Scratch (also available
online)

	 Unit poster – How we program
	 Software in 60 seconds – Introduction to Snap!
	 Software in 60 seconds – Scratch (2–7)
	 Storyboard templates
	 Pupil self-assessment information

E-SAFETY

	 Pupils don’t need accounts to download Scratch 1.4
or Scratch 2.0, or to use Scratch 2.0 or Snap! online.

	 If the pupils do register for accounts, they need to
give a parent’s or carer’s email address, for which
you will need permission.

	 Once registered, the pupils can share their work
with the global Scratch community in a safe online
space.

	 You might allow the pupils to incorporate
downloaded images and sound effects into
their games, but you should respect any licence
conditions and intellectual property rights, and
ensure the usual precautions for safe searching are
in place.

INCLUSION

	 Scratch has built-in support for a number of
languages.

	 Ask the pupils to think about inclusion and
accessibility as they develop their game, e.g. by
providing audio and visual prompts for questions.

	 Programming makes considerable demands on
the pupils’ thinking, and some pupils may need
additional support. Most pupils will do best
working with a partner.

 2 Getting ready

http://scratch.mit.edu/scratch_1.4
http://scratch.mit.edu/projects/editor
http://snap.berkeley.edu/snapsource/snap.html
www.kodugamelab.com
http://info.scratch.mit.edu/Video_Tutorials
http://info.scratch.mit.edu/Video_Tutorials
http://scratch.mit.edu
http://scratched.media.mit.edu
http://scratched.media.mit.edu
http://codeclub-assets.s3.amazonaws.com/public/codeclub-whackawitch.pdf
http://codeclub-assets.s3.amazonaws.com/public/codeclub-whackawitch.pdf
http://byob.berkeley.edu
www.flickr.com
www.freesound.org
http://en.wikipedia.org/wiki/Rubber_duck_debugging
http://en.wikipedia.org/wiki/Rubber_duck_debugging
http://chrome.angrybirds.com
http://light-bot.com/flash-lite.html
www.google.com/doodles/doctor-whos-50th-anniversary
www.google.com/doodles/doctor-whos-50th-anniversary
http://scratch.mit.edu/projects/15906446
http://scratch.mit.edu/projects/15906446
http://scratch.mit.edu/projects/15906870
http://scratch.mit.edu/projects/15906870
http://scratch.mit.edu/projects/15907506
http://scratch.mit.edu/projects/15907506

14

SCHOOL

 	Some pupils could use digital tools to
draw a flow chart or storyboard for their
game (e.g. Microsoft PowerPoint®), or
to sketch characters and backgrounds
(e.g. Microsoft Paint, IWB software or the
Brushes app).

 	Begin by asking the pupils to discuss the computer games
they play. Ask them to describe the algorithms these games
are based on. Show the pupils an example of an online game
(see Resources). Ask them to identify what makes some
games particularly enjoyable to play. You might like to use
the characteristics they identify as success criteria for the
games they will be creating in this unit.

 	Tell the pupils they are going to create their own games.
Assign each pupil a partner (pairing pupils is highly
recommended for this activity).

 	Ask the pupils to think about the structure of their game.
What are the objectives? What sort of player is it intended
for? What will happen in the game? Is there any progression
built in? It may be useful for the pupils to write down
these ideas. Encourage them to keep their ideas simple.
Explain that it’s better to create a simple, working game
than to become frustrated because their ideas exceed their
programming knowledge.

 	Ask the pupils to record the algorithm for their game as a
series of scenes on a storyboard, as a flow chart or as a story.

 	Ask the pupils to give each other feedback on their game
ideas and algorithms. Review the pupils’ ideas and provide
feedback yourself. Give the pupils the opportunity to revise
their plans and algorithms.

Core steps Extensions
Step 1: Planning a game

Software: Scratch (or Kodu) Apps: Snap! in the web browser (Scratch requires Flash, which is not available on iPad) Hardware: Desktop/laptop computers, microphones
Outcome: An original computer game, ideally uploaded to the Scratch community site

 3 Running the task – We are game developers

HOME

	 Encourage the pupils to share their
game ideas, including the initial
algorithm, with their parents or carers.
Ask them to revise their plans in the light
of the feedback they receive.

	 Storyboard templates

Examples of online games:
 http://chrome.angrybirds.com
 http://light-bot.com/flash-lite.html
 www.google.com/doodles/doctor-
whos-50th-anniversary

RESOURCES

POSSIBLE OUTCOME FOR THIS STEP:

WWW

http://chrome.angrybirds.com
http://light-bot.com/flash-lite.html
www.google.com/doodles/doctor-whos-50th-anniversary
www.google.com/doodles/doctor-whos-50th-anniversary

15

SCHOOL

 	�Some pupils could use other digital tools
to create artwork, sound and music,
saving them in standard formats and
then importing them into Scratch.

HOME

 	�The pupils can continue to develop their
game assets at home, either in Scratch
or using other digital tools.

 Ask the pupils to think about the assets they’ll need for their
games, such as backgrounds, costumes, music and sound
effects. Encourage them to sketch some of their ideas.

 Remind the pupils how the background and sprite editor
works in Scratch, or ask one or more pupils to demonstrate
this to the class. Discuss the difference between bitmap and
vector modes in the editor – in bitmap mode, each dot (pixel)
is specified, whereas in vector mode, the lines and other
shapes are defined precisely.

 Set the pupils the challenge of creating the backgrounds and
sprites they need for their game.

 Rather than creating game assets themselves, the pupils
could source them from Creative Commons licensed content,
using websites such as Flickr or Freesound (see Resources).

 Encourage the pupils to create multiple costumes for one or
more of their sprites, either to allow more realistic movement
using animation techniques, or to include actions according to
the ideas they’re incorporating into their game. Ask them how
they might achieve this (if necessary, remind them that they
can do this by switching costumes).

 Demonstrate how the sound recorder/editor works in Scratch,
or ask one or more pupils to demonstrate.

 Set the pupils the challenge of recording suitable sound
effects and dialogue for their games.

 The pupils might also like to record backing music for their
games. One way of doing this is to use the music blocks in
Scratch. The advantage of using Scratch’s built-in tools to
create backing music over simply importing a sound file is
that the tempo, pitch and volume of the music can be altered
according to events in the game.

 Ask the pupils to show their work to one another, making
changes in response to the feedback they receive.

Step 2: Creating and sourcing assets

	 Software in 60 seconds – Scratch
(2, 3, 4)

 Flickr: www.flickr.com
 Freesound: www.freesound.org

RESOURCES

POSSIBLE OUTCOME FOR THIS STEP:

WWW

www.flickr.com
www.freesound.org

16

SCHOOL

	 There’s plenty of scope in Scratch for
the pupils to extend their programming
skills beyond the basics. Using the
Make a block button in Scratch’s More
Blocks palette would allow the pupils to
simplify their code and gain experience
in creating procedures.

 	Remind the pupils how the Scratch script editor works, or
ask one or more pupils to demonstrate this to the class.

 	Before the pupils start programming their games, it’s worth
showing them a few ideas for how to program some simple
games, such as chasing sprites, steering a car, escaping
from a maze and/or shooting a target. Some examples can
be found online – see Resources.

 	Model the process of thinking through an algorithm and then
coding it using Scratch’s blocks. The pupils should have their
own algorithms, at least in outline form, which they can then
translate into Scratch command blocks.

 	Encourage the pupils to solve the problem of creating their
game by breaking it down into its component parts and then
solving each part. They should keep in mind the overall game
while they do this. Their outline algorithms should help them.

 	The pupils might start by thinking about how they will
control the movement of the player’s sprite, typically using
the keyboard or the mouse, with a repeat block and point
towards mouse or when key pressed blocks. The pupils
should also think about how they will control other elements
of their game, such as sprites to be chased, obstacles and
rewards. They may find it helpful to use the pick random
block for these elements.

 	The pupils will need to think about how the player’s sprite
interacts with other elements in the game: this is likely to
involve if/then/else blocks, sensing blocks, such as touching,
or perhaps broadcast and when I receive events.

 	The pupils should include some way of tracking progress or
building in challenge to their game, perhaps through scores,
lives or a countdown timer. Demonstrate how they can use
variables to do this.

Step 3: Creating a prototype of the game

HOME

	 Encourage the pupils to continue to
work on their scripts at home. Even if
their parents or carers can’t help with
the programming, having someone to
explain their programs to will develop
their logical thinking.

Core steps Extensions

POSSIBLE OUTCOME FOR THIS STEP:

 Examples of games written in
Scratch, such as http://scratch.
mit.edu/projects/15906446, http://
scratch.mit.edu/projects/15906870
and http://scratch.mit.edu/
projects/15907506

WWW

RESOURCES

http://scratch.mit.edu/projects/15906446
http://scratch.mit.edu/projects/15906446
http://scratch.mit.edu/projects/15906870
http://scratch.mit.edu/projects/15906870
http://scratch.mit.edu/projects/15907506
http://scratch.mit.edu/projects/15907506

17

 	It’s unlikely that the pupils’ Scratch scripts will work as
planned the first time they’re run. This isn’t a problem – the
pupils will learn a lot about programming, and computational
thinking, through the process of debugging their programs.

 	Remind the pupils of their earlier experience of debugging
programs in Unit 3.2 – We are bug fixers and some of the
other programming units in Switched on Computing. Draw a
parallel with playing computer games, where it’s important to
persevere in order to solve a puzzle or complete a level.

 	Brainstorm techniques the pupils can use to detect and
correct errors in their code, such as explaining to a friend (or
even a rubber duck – see Resources) what the code does,
isolating the bit of the code that is causing the problem
(perhaps by stepping through the program one line at a
time), changing variables, or rewriting code. Emphasise the
importance of using logical thinking in this process, and of
the scientific method of changing just one input (or line of
code) to see whether outputs change as predicted.

 	Remind the pupils of different types of bug that can occur,
emphasising the difference between bugs in their algorithms
(where their approach to solving the problem is wrong) and
bugs in the implementation of their algorithms (where they’ve
not correctly converted their ideas into Scratch code).

 	Support the pupils as they work to fix their programs.
Consider assigning the pupils a debugging partner, even if
they are working individually, with each helping the other
overcome the problems in their code.

 	It’s possible the pupils will encounter problems that are
caused by limitations inherent in Scratch itself – in these
cases, encourage the pupils to think of ways of working
around the problem to avoid the limitation.

Step 4: Debugging the game script SCHOOL

 	The pupils could post their buggy
code to the Scratch community site,
requesting help from more experienced
users, or you could do this on their
behalf.

 	The Scratch community forums might
also provide useful information about
ways of solving some of the problems
the pupils encounter.

HOME

 	Encourage the pupils to continue to
debug their code at home. Explaining the
problem to a family member can be an
effective way of finding a solution, as can
returning to the problem after a break.

 Rubber duck debugging:
http://en.wikipedia.org/wiki/
Rubber_duck_debugging

WWW

RESOURCES

POSSIBLE OUTCOME FOR THIS STEP:

http://en.wikipedia.org/wiki/Rubber_duck_debugging
http://en.wikipedia.org/wiki/Rubber_duck_debugging

18

SCHOOL

	 Some pupils could post their games
to the Scratch community site to get
feedback from other members of the
community.

HOME

	 Encourage the pupils to show their
games to their parents, carers or
siblings, asking for additional feedback,
and developing their games further on
the basis of the feedback they receive.

 	Remind the pupils of the criteria they arrived at in Step 1 for
what makes a good computer game. Encourage the pupils
to look at their games with a critical eye, using these criteria
to guide them. For example, how easy is the game for a
beginner to play? Does it offer sufficient challenge to make
someone want to play it more than once? Are the graphics
and sound as effective as they could be?

 	Give the pupils time to work on their games to improve their
playability.

 	Explain that the key to creating a good game is testing it
on users, and developing it further on the basis of their
feedback.

 	Assign each pupil (or pair) a partner (or partnering pair) to test
and provide feedback on the game. Encourage the pupils
to give each other specific suggestions for how the game
can be improved, writing their suggestions down so that the
original programmers can work through this list.

 	Support the pupils as they work through the suggestions
for improvements, addressing as many of them as they can
in the time available. Remind the pupils that they’ll need to
test their code carefully to ensure that any changes and new
features work properly.

 	If time allows, assign the pupils/pairs to another partner/
partnering pair and repeat the process to get further
feedback, which the programmers can use to make further
changes to their games.

Step 5: Testing the game

Core steps Extensions

POSSIBLE OUTCOME FOR THIS STEP:

19

 	If you have time, give the pupils a chance to test their game
again, and make any final tweaks.

 	Ask the pupils to think about any instructions or other
information they need to include with their game, and how
these might best be presented. Show the pupils the information
included with the example Scratch games (see Resources).

 	Suggest that the pupils include a splash screen at the beginning
of their game and a short set of instructions, either as text or as
recorded narration. Mention that giving too much information at
this point might spoil the fun of the game for players.

 	Show the pupils how games on the Scratch site can be
remixed by others (i.e. other programmers make their own
version of a Scratch project by changing the code, sprites,
etc.). Encourage the pupils to add further comments to
their scripts to explain how they work (by right clicking and
choosing ‘Add Comment’), so that if anyone does remix the
game they’ll be able to understand quickly how it works.
Remind the pupils of the importance of using logical reasoning
to explain this.

 	If the pupils have Scratch accounts (which requires parental
consent), they can upload their games to the Scratch website
themselves; alternatively, you could upload the games to
a shared class account (providing you have appropriate
consent), or to the school learning platform or class blog for
others to play.

 	Encourage the pupils to review the feedback they receive
on their games while keeping an eye on any inappropriate
comments; this is easier to do on your school learning platform
or class blog.

 	Use a final plenary for the pupils to review their work on
this project and discuss how their programming skills have
developed.

 	Finally, the children should evaluate the success of their work.

Step 6: Writing game instructions and publishing the game

 Pupil self-assessment information

 Link to an example Scratch
game, e.g. http://scratch.mit.edu/
projects/15906446, http://scratch.mit.
edu/projects/15906870 and http://
scratch.mit.edu/projects/15907506

RESOURCES

SCHOOL

 	Some pupils could record a screencast
in which they explain how their
algorithms and scripts work, as well as
discussing some of the difficulties they
overcame in developing their game.

HOME

 	Encourage the pupils to share their
completed game with a wider circle of
family and friends, feeding back on the
reaction they received.

POSSIBLE OUTCOME FOR THIS STEP:

WWW

http://scratch.mit.edu/projects/15906446
http://scratch.mit.edu/projects/15906446
http://scratch.mit.edu/projects/15906870
http://scratch.mit.edu/projects/15906870
http://scratch.mit.edu/projects/15907506
http://scratch.mit.edu/projects/15907506

20

ALL CHILDREN SHOULD BE ABLE TO:

 	Create an algorithm for a game

 	Create images and sounds for use in their
game

 	Use sequences of instructions

 	Detect errors in their game

MOST CHILDREN WILL BE ABLE TO:

 	Create music for use in their game

 	Use selection and repetition in their game

 	Correct errors in their game

 	Improve their game on the basis of the
feedback they receive

 	Add instructions to their game

SOME CHILDREN WILL BE ABLE TO:

 Break their game into its component parts
and develop them separately

 Create multiple images for characters and
use them for animation

 Use variables in their game

 Explain how their game works

 Include comments in the code for their game

COMPUTING PoS REFERENCE

 	Design programs that accomplish
specific goals

 	Create content

 	Use sequence in programs

 	Use logical reasoning to detect errors in
algorithms and programs

 	Create content

 	Use selection and repetition in programs

 	Use logical reasoning to correct errors in
algorithms and programs

 	Write and debug programs that
accomplish specific goals

 	Create programs, systems and content

 	Solve problems by decomposing them
into smaller parts

 	Create content

 	Work with variables

 	Use logical reasoning to explain how
some simple algorithms work

 	Use logical reasoning to explain how
some simple algorithms work

BADGE

PROGRESSION

The following units will allow your children to develop their knowledge and skills further.

 	Unit 6.4 – We are interface designers
 	Unit 6.5 – We are mobile app developers

 4 	Assessment guidance
Use this page to assess the children’s computing knowledge and skills. You may wish to use these
statements in conjunction with the badges provided on the CD-ROM or community site and/or with your
own school policy for assessing work.

LOGICAL THINKER 2 COMMUNICATOR

SEARCHERCONTENT CREATOR 2 E-SAFETY 2

PROGRAMMER 2 PROBLEM SOLVER 2

LOGICAL THINKER 2 COMMUNICATOR

SEARCHERCONTENT CREATOR 2 E-SAFETY 2

PROGRAMMER 2 PROBLEM SOLVER 2

LOGICAL THINKER 2 COMMUNICATOR

SEARCHERCONTENT CREATOR 2 E-SAFETY 2

PROGRAMMER 2 PROBLEM SOLVER 2

LOGICAL THINKER 2 COMMUNICATOR

SEARCHERCONTENT CREATOR 2 E-SAFETY 2

PROGRAMMER 2 PROBLEM SOLVER 2

LOGICAL THINKER 2 COMMUNICATOR

SEARCHERCONTENT CREATOR 2 E-SAFETY 2

PROGRAMMER 2 PROBLEM SOLVER 2

LOGICAL THINKER 2 COMMUNICATOR

SEARCHERCONTENT CREATOR 2 E-SAFETY 2

PROGRAMMER 2 PROBLEM SOLVER 2

LOGICAL THINKER 2 COMMUNICATOR

SEARCHERCONTENT CREATOR 2 E-SAFETY 2

PROGRAMMER 2 PROBLEM SOLVER 2

LOGICAL THINKER 2 COMMUNICATOR

SEARCHERCONTENT CREATOR 2 E-SAFETY 2

PROGRAMMER 2 PROBLEM SOLVER 2

LOGICAL THINKER 2 COMMUNICATOR

SEARCHERCONTENT CREATOR 2 E-SAFETY 2

PROGRAMMER 2 PROBLEM SOLVER 2

LOGICAL THINKER 2 COMMUNICATOR

SEARCHERCONTENT CREATOR 2 E-SAFETY 2

PROGRAMMER 2 PROBLEM SOLVER 2

LOGICAL THINKER 2 COMMUNICATOR

SEARCHERCONTENT CREATOR 2 E-SAFETY 2

PROGRAMMER 2 PROBLEM SOLVER 2

LOGICAL THINKER 2 COMMUNICATOR

SEARCHERCONTENT CREATOR 2 E-SAFETY 2

PROGRAMMER 2 PROBLEM SOLVER 2

LOGICAL THINKER 2 COMMUNICATOR

SEARCHERCONTENT CREATOR 2 E-SAFETY 2

PROGRAMMER 2 PROBLEM SOLVER 2

LOGICAL THINKER 2 COMMUNICATOR

SEARCHERCONTENT CREATOR 2 E-SAFETY 2

PROGRAMMER 2 PROBLEM SOLVER 2

21

DISPLAYS AND ACTIVITIES

	 Consider allowing the pupils to bring in
commercial video games and games consoles
for the first step of the unit, sharing their favourite
games with others in the class.

	 Encourage the pupils to work together to act
out the instructions for the sprites in their game
as a way to develop their understanding of their
algorithms.

	 The pupils’ original artwork and written/drawn
algorithms for their games can make an effective
display, alongside screenshots from their
completed game.

	 When the games are complete, you could organise
a tournament in the class or across the school.

	 The games could be used on a stall at the school
fête for fundraising.

WEBLINKS

	 http://www.skillset.org/games has useful material
on computer games, particularly in education.

	 Some examples of game design projects:
http://makethingsdostuff.co.uk/make-things/
games.

	 Code Club have extensive materials on
programming projects for primary pupils,
including some more structured material on

game development, see www.codeclub.org.uk
(registration required).

	 Digital Schoolhouse has a Pac Man game activity
at: www.resources.digitalschoolhouse.org.uk/key-
stage-2-ages-7-10/142-scratch-lessons-free.

VISITS

	 It would be worth pairing up with a younger
class for this unit, getting your pupils to design
and develop games for younger children. If so, a
preliminary visit to the class would help the pupils
pitch their games at an appropriate level.

	 It would also be interesting to invite a game
developer to discuss their work with the pupils,
either in person or via video conference.

BOOKS

	 Badger, M. Scratch 1.4 Beginner’s Guide.
(Packt Publishing, 2009)

	 Burgun, K. Game Design Theory: A New Philosophy
for Understanding Games. (CRC Press, 2012)

	 Ford, J. Scratch Programming for Teens.
(Delmar, 2008)

	 Koster, R. A Theory of Fun. (O’Reilly Media, 2013)
	 The LEAD Project. Super Scratch Programming

Adventure. (No Starch Press, 2012)

WWW

	 Once the pupils have mastered programming
in Scratch, they might like to explore the very
different interface and tools available in Kodu.

	 Encourage the pupils to think about the algorithms
and programs that lie behind the computer games
they play.

	 The pupils can remix others’ games on the Scratch
community website.

	 More advanced tools such as Game Salad
(http://gamesalad.com) and GameMaker: Studio
(www.yoyogames.com/studio) might appeal
to talented or gifted pupils who have acquired
expertise in Scratch.

	 Text-based adventure games, known as
‘interactive fiction’, provide another approach to
this unit. The Quest toolkit (http://textadventures.
co.uk/quest) provides one set of tools for this,
although it is possible to program games like this
in a standard programming language such as
Python.

	 The pupils could apply the programming skills and
knowledge they acquire in this unit to developing
other programs, particularly games and interactive
simulations, for one or more aspects of the
curriculum. Science is a particularly rich source of
ideas for this approach.

 6 	Taking it further
When you’ve finished, you might want to extend the project in the following ways.

 5 	 Classroom ideas
Practical suggestions to bring this unit alive!

http://www.skillset.org/games
http://makethingsdostuff.co.uk/make-things/games
http://makethingsdostuff.co.uk/make-things/games
www.codeclub.org.uk
www.resources.digitalschoolhouse.org.uk/key-stage-2-ages-7-10/142-scratch-lessons-free
www.resources.digitalschoolhouse.org.uk/key-stage-2-ages-7-10/142-scratch-lessons-free
http://gamesalad.com
www.yoyogames.com/studio
http://textadventures.co.uk/quest
http://textadventures.co.uk/quest

